ตัวประกอบของ 5034 และวิธีการแยกตัวประกอบของ 5034
คำนิยาม
ตัวประกอบของจำนวนนับใดๆ หมายถึง จำนวนนับที่หารจำนวนนับที่เรากำหนดให้ได้ลงตัว
ดังนั้นตัวประกอบของ 5034 หมายถึงจำนวนนับที่หาร 5034 ได้ลงตัว
▶
▶
2. การแยกตัวประกอบของ 5034 ด้วยวิธีหารสั้น
ตัวประกอบของ 5034 มีอะไรบ้าง
ตัวประกอบของ 5034 มีทั้งหมด 8 ตัวคือ 1, 2, 3, 6, 839, 1678, 2517, 5034
ตรวจคำตอบด้วยการหาร
5034 ÷ 1 | = | 5034 | เหลือเศษ 0 |
5034 ÷ 2 | = | 2517 | เหลือเศษ 0 |
5034 ÷ 3 | = | 1678 | เหลือเศษ 0 |
5034 ÷ 6 | = | 839 | เหลือเศษ 0 |
5034 ÷ 839 | = | 6 | เหลือเศษ 0 |
5034 ÷ 1678 | = | 3 | เหลือเศษ 0 |
5034 ÷ 2517 | = | 2 | เหลือเศษ 0 |
5034 ÷ 5034 | = | 1 | เหลือเศษ 0 |
ตรวจคำตอบด้วยการจับคู่หาจำนวนที่คูณกันได้ 5034
1 x 5034 | = | 5034 |
2 x 2517 | = | 5034 |
3 x 1678 | = | 5034 |
6 x 839 | = | 5034 |
ผลบวกของตัวประกอบทั้งหมดของ 5034
1 + 2 + 3 + 6 + 839 + 1678 + 2517 + 5034 = 10080
▶ ตัวประกอบของ 5034 ที่เป็นจำนวนเฉพาะมีทั้งหมด 3 ตัวดังนี้
2, 3, 839
จำนวนเฉพาะ (Prime number) คือ จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง
ตัวประกอบที่เป็นจำนวนเฉพาะ เรียกว่า "ตัวประกอบเฉพาะ"
การแยกตัวประกอบคืออะไร
การแยกตัวประกอบ คือ การเขียนจำนวนนับนั้นให้อยู่ในรูปการคูณของตัวประกอบเฉพาะ
▶ 5034 สามารถแยกตัวประกอบได้ดังนี้
5034 = 2 x 3 x 839
วิธีการแยกตัวประกอบ
1. การแยกตัวประกอบของ 5034 ด้วยวิธีแผนภาพต้นไม้🌲
วิธีทำ
1จำนวนที่โจทย์กำหนดมา คือ 5034 ดังนั้นให้หาจำนวนที่คูณกันได้ 5034 มา 1 คู่ เช่น 2 x 2517
2พิจารณาว่าจำนวน 1 คู่ที่เลือกมาเป็นจำนวนเฉพาะหรือยัง
3ถ้าจำนวนใดยังไม่ใช่จำนวนเฉพาะให้หาจำนวนที่คูณกันได้จำนวนนั้น และให้เลือกเอาจำนวนที่คูณกันได้จำนวนนั้นมา 1 คู่(ทำคล้ายๆกับข้อที่ 1)
4ทำโดยใช้หลักการข้อที่ 2 และ 3 ไปเรื่อยๆ จนกว่าจำนวนสุดท้ายจะเป็นจำนวนเฉพาะ
5เอาจำนวนเฉพาะทั้งหมดที่ได้มาเขียนให้อยู่ในรูปการคูณก็จะได้เป็นการแยกตัวประกอบของ 5034
ตัวอย่างแผนภาพต้นไม้ของ 5034 แบบที่หนึ่ง
- 5034
- 6
- 2
- 3
- 839
- 6
ตัวอย่างแผนภาพต้นไม้ของ 5034 แบบที่สอง
- 5034
- 2
- 2517
- 3
- 839
ดังนั้น 5034 สามารถแยกตัวประกอบได้ดังนี้
5034 =
2 x 3 x 839
2. การแยกตัวประกอบของ 5034 ด้วยวิธีหารสั้นวิธีทำ1หาร 5034 ด้วยตัวประกอบเฉพาะของ 5034 นั้นก็คือ 2, 3, 839 (ในการหารแต่ละครั้งแนะนำให้ใช้ตัวประกอบเฉพาะที่มีค่าน้อยที่สุด)2หากผลการหารที่ได้ยังไม่เท่ากับ 1 ให้นำผลการหารที่ได้ก่อนหน้านี้มาหารด้วยตัวประกอบเฉพาะอีกครั้ง3ดำเนินการเช่นเดียวกับข้อ 2 ไปเรื่อยๆ จนกว่าผลหารสุดท้ายมีค่าเท่ากับ 14นำตัวหารทั้งหมดมาเขียนให้อยู่ในรูปการคูณก็จะได้เป็นการแยกตัวประกอบของ 5034
2)50343)2517839)8391ดังนั้น 5034 สามารถแยกตัวประกอบได้ดังนี้5034 = 2 x 3 x 839วิธีหาจำนวนตัวประกอบทั้งหมดของ 5034
1แยกตัวประกอบของ 5034 และเขียนให้อยู่ในรูปเลขยกกำลังจะได้เท่ากับ 21 x 31 x 83912ให้นำ 1 ไปบวกกับเลขชี้กำลังของตัวประกอบแต่ละตัวดังนี้- 👉 2 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 3 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 839 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
3นำผลบวกของเลขชี้กำลังที่ได้มาคูณกันดังนี้ 2 x 2 x 2 = 8✔คำตอบ ตัวประกอบทั้งหมดของ 5034 มีทั้งหมด 8 ตัว ✔
วิธีทำ
1หาร 5034 ด้วยตัวประกอบเฉพาะของ 5034 นั้นก็คือ 2, 3, 839 (ในการหารแต่ละครั้งแนะนำให้ใช้ตัวประกอบเฉพาะที่มีค่าน้อยที่สุด)
2หากผลการหารที่ได้ยังไม่เท่ากับ 1 ให้นำผลการหารที่ได้ก่อนหน้านี้มาหารด้วยตัวประกอบเฉพาะอีกครั้ง
3ดำเนินการเช่นเดียวกับข้อ 2 ไปเรื่อยๆ จนกว่าผลหารสุดท้ายมีค่าเท่ากับ 1
4นำตัวหารทั้งหมดมาเขียนให้อยู่ในรูปการคูณก็จะได้เป็นการแยกตัวประกอบของ 5034
2
)5034
3
)2517
839
)839
1
ดังนั้น 5034 สามารถแยกตัวประกอบได้ดังนี้
5034 = 2 x 3 x 839
1แยกตัวประกอบของ 5034 และเขียนให้อยู่ในรูปเลขยกกำลังจะได้เท่ากับ 21 x 31 x 8391
2ให้นำ 1 ไปบวกกับเลขชี้กำลังของตัวประกอบแต่ละตัวดังนี้
- 👉 2 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 3 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 839 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
3นำผลบวกของเลขชี้กำลังที่ได้มาคูณกันดังนี้ 2 x 2 x 2 = 8✔
คำตอบ ตัวประกอบทั้งหมดของ 5034 มีทั้งหมด 8 ตัว ✔
เมื่อคุณรู้ตัวประกอบและวิธีการแยกตัวประกอบของ 5034 แล้วลองแวะดูบทความอื่นๆที่น่าสนใจด้านล่างนี้ได้น่ะ 👇