ตัวประกอบของ 7950 และวิธีการแยกตัวประกอบของ 7950
คำนิยาม
ตัวประกอบของจำนวนนับใดๆ หมายถึง จำนวนนับที่หารจำนวนนับที่เรากำหนดให้ได้ลงตัว
ดังนั้นตัวประกอบของ 7950 หมายถึงจำนวนนับที่หาร 7950 ได้ลงตัว
▶
▶
2. การแยกตัวประกอบของ 7950 ด้วยวิธีหารสั้น
ตัวประกอบของ 7950 มีอะไรบ้าง
ตัวประกอบของ 7950 มีทั้งหมด 24 ตัวคือ 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 53, 75, 106, 150, 159, 265, 318, 530, 795, 1325, 1590, 2650, 3975, 7950
ตรวจคำตอบด้วยการหาร
7950 ÷ 1 | = | 7950 | เหลือเศษ 0 |
7950 ÷ 2 | = | 3975 | เหลือเศษ 0 |
7950 ÷ 3 | = | 2650 | เหลือเศษ 0 |
7950 ÷ 5 | = | 1590 | เหลือเศษ 0 |
7950 ÷ 6 | = | 1325 | เหลือเศษ 0 |
7950 ÷ 10 | = | 795 | เหลือเศษ 0 |
7950 ÷ 15 | = | 530 | เหลือเศษ 0 |
7950 ÷ 25 | = | 318 | เหลือเศษ 0 |
7950 ÷ 30 | = | 265 | เหลือเศษ 0 |
7950 ÷ 50 | = | 159 | เหลือเศษ 0 |
7950 ÷ 53 | = | 150 | เหลือเศษ 0 |
7950 ÷ 75 | = | 106 | เหลือเศษ 0 |
7950 ÷ 106 | = | 75 | เหลือเศษ 0 |
7950 ÷ 150 | = | 53 | เหลือเศษ 0 |
7950 ÷ 159 | = | 50 | เหลือเศษ 0 |
7950 ÷ 265 | = | 30 | เหลือเศษ 0 |
7950 ÷ 318 | = | 25 | เหลือเศษ 0 |
7950 ÷ 530 | = | 15 | เหลือเศษ 0 |
7950 ÷ 795 | = | 10 | เหลือเศษ 0 |
7950 ÷ 1325 | = | 6 | เหลือเศษ 0 |
7950 ÷ 1590 | = | 5 | เหลือเศษ 0 |
7950 ÷ 2650 | = | 3 | เหลือเศษ 0 |
7950 ÷ 3975 | = | 2 | เหลือเศษ 0 |
7950 ÷ 7950 | = | 1 | เหลือเศษ 0 |
ตรวจคำตอบด้วยการจับคู่หาจำนวนที่คูณกันได้ 7950
1 x 7950 | = | 7950 |
2 x 3975 | = | 7950 |
3 x 2650 | = | 7950 |
5 x 1590 | = | 7950 |
6 x 1325 | = | 7950 |
10 x 795 | = | 7950 |
15 x 530 | = | 7950 |
25 x 318 | = | 7950 |
30 x 265 | = | 7950 |
50 x 159 | = | 7950 |
53 x 150 | = | 7950 |
75 x 106 | = | 7950 |
ผลบวกของตัวประกอบทั้งหมดของ 7950
1 + 2 + 3 + 5 + 6 + 10 + 15 + 25 + 30 + 50 + 53 + 75 + 106 + 150 + 159 + 265 + 318 + 530 + 795 + 1325 + 1590 + 2650 + 3975 + 7950 = 20088
▶ ตัวประกอบของ 7950 ที่เป็นจำนวนเฉพาะมีทั้งหมด 4 ตัวดังนี้
2, 3, 5, 53
จำนวนเฉพาะ (Prime number) คือ จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง
ตัวประกอบที่เป็นจำนวนเฉพาะ เรียกว่า "ตัวประกอบเฉพาะ"
การแยกตัวประกอบคืออะไร
การแยกตัวประกอบ คือ การเขียนจำนวนนับนั้นให้อยู่ในรูปการคูณของตัวประกอบเฉพาะ
▶ 7950 สามารถแยกตัวประกอบได้ดังนี้
7950 = 2 x 3 x 5 x 5 x 53
จากผลการแยกตัวประกอบด้านบนจะเห็นว่ามีจำนวนบางจำนวนที่ซ้ำกัน ดังนั้นเราสามารถเขียนการแยกตัวประกอบของ 7950 ให้อยู่ในรูปเลขยกกำลังได้ดังนี้
7950 = 2 x 3 x 52 x 53
จากผลการแยกตัวประกอบด้านบนจะเห็นว่ามีจำนวนบางจำนวนที่ซ้ำกัน ดังนั้นเราสามารถเขียนการแยกตัวประกอบของ 7950 ให้อยู่ในรูปเลขยกกำลังได้ดังนี้
7950 = 2 x 3 x 52 x 53
วิธีการแยกตัวประกอบ
1. การแยกตัวประกอบของ 7950 ด้วยวิธีแผนภาพต้นไม้🌲
วิธีทำ
1จำนวนที่โจทย์กำหนดมา คือ 7950 ดังนั้นให้หาจำนวนที่คูณกันได้ 7950 มา 1 คู่ เช่น 2 x 3975
2พิจารณาว่าจำนวน 1 คู่ที่เลือกมาเป็นจำนวนเฉพาะหรือยัง
3ถ้าจำนวนใดยังไม่ใช่จำนวนเฉพาะให้หาจำนวนที่คูณกันได้จำนวนนั้น และให้เลือกเอาจำนวนที่คูณกันได้จำนวนนั้นมา 1 คู่(ทำคล้ายๆกับข้อที่ 1)
4ทำโดยใช้หลักการข้อที่ 2 และ 3 ไปเรื่อยๆ จนกว่าจำนวนสุดท้ายจะเป็นจำนวนเฉพาะ
5เอาจำนวนเฉพาะทั้งหมดที่ได้มาเขียนให้อยู่ในรูปการคูณก็จะได้เป็นการแยกตัวประกอบของ 7950
ตัวอย่างแผนภาพต้นไม้ของ 7950 แบบที่หนึ่ง
- 7950
- 75
- 5
- 15
- 3
- 5
- 106
- 2
- 53
- 75
ตัวอย่างแผนภาพต้นไม้ของ 7950 แบบที่สอง
- 7950
- 2
- 3975
- 3
- 1325
- 5
- 265
- 5
- 53
ดังนั้น 7950 สามารถแยกตัวประกอบได้ดังนี้
7950 =
2 x 3 x 5 x 5 x 53
หรือจะเขียนให้อยู่ในรูปเลขยกกำลัง
7950 =
2 x 3 x 52 x 53 หรือ 21 x 31 x 52 x 531
2. การแยกตัวประกอบของ 7950 ด้วยวิธีหารสั้นวิธีทำ1หาร 7950 ด้วยตัวประกอบเฉพาะของ 7950 นั้นก็คือ 2, 3, 5, 53 (ในการหารแต่ละครั้งแนะนำให้ใช้ตัวประกอบเฉพาะที่มีค่าน้อยที่สุด)2หากผลการหารที่ได้ยังไม่เท่ากับ 1 ให้นำผลการหารที่ได้ก่อนหน้านี้มาหารด้วยตัวประกอบเฉพาะอีกครั้ง3ดำเนินการเช่นเดียวกับข้อ 2 ไปเรื่อยๆ จนกว่าผลหารสุดท้ายมีค่าเท่ากับ 14นำตัวหารทั้งหมดมาเขียนให้อยู่ในรูปการคูณก็จะได้เป็นการแยกตัวประกอบของ 7950
2)79503)39755)13255)26553)531ดังนั้น 7950 สามารถแยกตัวประกอบได้ดังนี้7950 = 2 x 3 x 5 x 5 x 53หรือจะเขียนให้อยู่ในรูปเลขยกกำลัง7950 = 2 x 3 x 52 x 53 หรือ 21 x 31 x 52 x 531วิธีหาจำนวนตัวประกอบทั้งหมดของ 7950
1แยกตัวประกอบของ 7950 และเขียนให้อยู่ในรูปเลขยกกำลังจะได้เท่ากับ 21 x 31 x 52 x 5312ให้นำ 1 ไปบวกกับเลขชี้กำลังของตัวประกอบแต่ละตัวดังนี้- 👉 2 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 3 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 5 มีเลขชี้กำลังคือ 2 ให้เอา 2 + 1 = 3
- 👉 53 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
3นำผลบวกของเลขชี้กำลังที่ได้มาคูณกันดังนี้ 2 x 2 x 3 x 2 = 24✔คำตอบ ตัวประกอบทั้งหมดของ 7950 มีทั้งหมด 24 ตัว ✔
วิธีทำ
1หาร 7950 ด้วยตัวประกอบเฉพาะของ 7950 นั้นก็คือ 2, 3, 5, 53 (ในการหารแต่ละครั้งแนะนำให้ใช้ตัวประกอบเฉพาะที่มีค่าน้อยที่สุด)
2หากผลการหารที่ได้ยังไม่เท่ากับ 1 ให้นำผลการหารที่ได้ก่อนหน้านี้มาหารด้วยตัวประกอบเฉพาะอีกครั้ง
3ดำเนินการเช่นเดียวกับข้อ 2 ไปเรื่อยๆ จนกว่าผลหารสุดท้ายมีค่าเท่ากับ 1
4นำตัวหารทั้งหมดมาเขียนให้อยู่ในรูปการคูณก็จะได้เป็นการแยกตัวประกอบของ 7950
2
)7950
3
)3975
5
)1325
5
)265
53
)53
1
ดังนั้น 7950 สามารถแยกตัวประกอบได้ดังนี้
7950 = 2 x 3 x 5 x 5 x 53
หรือจะเขียนให้อยู่ในรูปเลขยกกำลัง
7950 = 2 x 3 x 52 x 53 หรือ 21 x 31 x 52 x 531
1แยกตัวประกอบของ 7950 และเขียนให้อยู่ในรูปเลขยกกำลังจะได้เท่ากับ 21 x 31 x 52 x 531
2ให้นำ 1 ไปบวกกับเลขชี้กำลังของตัวประกอบแต่ละตัวดังนี้
- 👉 2 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 3 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
- 👉 5 มีเลขชี้กำลังคือ 2 ให้เอา 2 + 1 = 3
- 👉 53 มีเลขชี้กำลังคือ 1 ให้เอา 1 + 1 = 2
3นำผลบวกของเลขชี้กำลังที่ได้มาคูณกันดังนี้ 2 x 2 x 3 x 2 = 24✔
คำตอบ ตัวประกอบทั้งหมดของ 7950 มีทั้งหมด 24 ตัว ✔
เมื่อคุณรู้ตัวประกอบและวิธีการแยกตัวประกอบของ 7950 แล้วลองแวะดูบทความอื่นๆที่น่าสนใจด้านล่างนี้ได้น่ะ 👇