เครื่องคิดเลขหารากที่สอง, รากที่สาม
เครื่องคิดเลขจะแสดงคำตอบและวิธีหารากที่สอง, รากที่สามให้อัตโนมัติ
รากที่สามของ 3270 คืออะไร มาดูคำตอบและวิธีการคำนวณกัน
การหารากที่สามของ 3270 ไม่ยากเลย ในที่นี้ได้แสดงวิธีหารากที่สามของ 3270 ไว้เป็นขั้นตอนอ่านแล้วเข้าใจง่าย
รากที่สามของ 3270 เขียนเป็นสัญลักษณ์ได้ดังนี้
                  \(\sqrt[3]{3270}\)                  
คำตอบรากที่สามของ 3270 = \( \sqrt[3]{3270}\)
หรือค่าประมาณ = 14.843
นิยามของรากที่สามคำตอบรากที่สามของ 3270 = \( \sqrt[3]{3270}\)
หรือค่าประมาณ = 14.843
ให้ a แทนจำนวนจริงใดๆ รากที่สามของ a คือ จำนวนจริงที่ยกกำลังสามแล้วได้ a
รากที่สามของ a เขียนแทนด้วยสัญลักษณ์ \(\sqrt[3]{a}\)
ดังนั้นจากคำนิยามข้างต้น
รากที่สามของ 3270 คือ จำนวนจริงที่ยกกำลังสามแล้วได้ 3270
รากที่สามของ 3270 เขียนแทนด้วยสัญลักษณ์ \(\sqrt[3]{3270}\)
การเขียนชื่อ "ราก" สามารถเขียนว่า
                    
"รากที่สาม" หรือ "รากที่ 3" ก็ได้
วิธีหารากที่สามของ 3270 ด้วยการหาจำนวนจริงที่ยกกำลังสามแล้วได้ 3270
เนื่องจากไม่มีจำนวนใดที่ยกกำลังสามแล้วเท่ากับ 3270 แต่เราสามารถหารากที่สามของ 3270 ด้วยวิธีอื่นๆ ได้เช่น การแยกตัวประกอบ ตามตัวอย่างและขั้นตอนด้านล่าง
วิธีหารากที่สามของ 3270 ด้วยการแยกตัวประกอบ
การแยกตัวประกอบในที่นี้ใช้วิธีหารสั้น
2
)3270
3
)1635
5
)545
109
)109
1
3270 แยกตัวประกอบได้ = 2 x 3 x 5 x 109                       👉ดูวิธีการแยกตัวประกอบ
รากที่สามของ 3270 =
                      \(\sqrt[3]{2 \times 3 \times 5 \times 109}\)
เอาตัวประกอบที่ซ้ำกัน 3 ตัวออกจากเครื่องหมาย \(\sqrt[3]{\qquad}\) มาเขียนด้านนอกได้ 1 ตัว ซึ่งจากการแยกตัวประกอบด้านบนสามารถอธิบายได้ดังนี้
▶ ไม่มีตัวประกอบตัวใดที่ซ้ำกัน 3 ตัวหรือมากกว่า 3 ตัว
ดังนั้น
รากที่สามของ 3270                              =
                            \(\sqrt[3]{2 \times 3 \times 5 \times 109}\)
คำตอบ รากที่สามของ 3270 = \(\sqrt[3]{3270}\)
เนื่องจากรากที่สามของ 3270 ไม่สามารถถอดค่าออกจากเครื่องหมาย \(\sqrt[3]{\qquad}\) ได้ ดังนั้นเราสามารถหารากที่สามของ 3270 ได้โดยการหาค่าประมาณ
ค่าประมาณของ รากที่สามของ 3270 คือ
                        14.843
***ณ ปัจจุบันระบบยังไม่สามารถแสดงวิธีหาค่าประมาณได้มีแค่คำตอบ
😁 จะเห็นได้ว่าการหารากที่สามของ 3270 ไม่ใช่เรื่องยากอะไรมากนักขอแค่เราพยายามและฝึกฝนทำโจทย์เรื่อยๆ และอย่าไปเครียดกับมันมากนักเราก็สามารถทำมันได้
