เครื่องคิดเลขหารากที่สอง, รากที่สาม
เครื่องคิดเลขจะแสดงคำตอบและวิธีหารากที่สอง, รากที่สามให้อัตโนมัติ
*ขณะนี้ระบบรองเลข 0 และจำนวนนับ 1 - 1,000,000 เท่านั้น

รากที่สองของ 8815 คืออะไร มาดูคำตอบและวิธีการคำนวณกัน

การหารากที่สองของ 8815 ไม่ยากเลย ในที่นี้ได้แสดงวิธีหารากที่สองของ 8815 ไว้เป็นขั้นตอนอ่านแล้วเข้าใจง่าย
เทพควิช-lnwquiz
รากที่สองของ 8815 เขียนเป็นสัญลักษณ์ได้ดังนี้ \(\sqrt{8815}\) และ -\(\sqrt{8815}\)
คำตอบรากที่สองของ 8815 = \( \sqrt{8815}\) และ -\( \sqrt{8815}\)
หรือค่าประมาณ = 93.888 และ -93.888
นิยามของรากที่สอง
🤓 ดังนั้นจากคำนิยามข้างต้น รากที่สองของ 8815 คือจำนวนจริงที่ยกกำลังสองแล้วได้ 8815
และเนื่องจาก 8815 เป็นจำนวนจริงบวก รากที่สองของ 8815 มีสองรากคือ
รากที่สองที่เป็นบวกของ 8815 ซึ่งแทนด้วยสัญลักษณ์ \(\sqrt{8815}\)
รากที่สองที่เป็นลบของ 8815 ซึ่งแทนด้วยสัญลักษณ์ -\(\sqrt{8815}\)
การเขียนชื่อ "ราก" สามารถเขียนว่า
"รากที่สอง" หรือ "รากที่ 2" ก็ได้

วิธีหารากที่สองของ 8815 ด้วยการหาจำนวนจริงที่ยกกำลังสองแล้วได้ 8815

เนื่องจากไม่มีจำนวนใดที่ยกกำลังสองแล้วเท่ากับ 8815 แต่เราสามารถหารากที่สองของ 8815 ด้วยวิธีอื่นๆ ได้เช่น การแยกตัวประกอบ ตามตัวอย่างและขั้นตอนด้านล่าง

วิธีหารากที่สองของ 8815 ด้วยการแยกตัวประกอบ

***ในที่นี้ใช้รากที่เป็นบวกเป็นหลักในขั้นตอนแสดงวิธีทำ
การแยกตัวประกอบในที่นี้ใช้วิธีหารสั้น
5
)8815
41
)1763
43
)43
1
8815 แยกตัวประกอบได้ = 5 x 41 x 43  👉ดูวิธีการแยกตัวประกอบ
รากที่สองของ 8815 = \(\sqrt{5 \times 41 \times 43}\)

เอาตัวประกอบที่ซ้ำกัน 2 ตัวออกจากเครื่องหมาย \(\sqrt{\qquad}\) มาเขียนด้านนอกได้ 1 ตัว ซึ่งจากการแยกตัวประกอบด้านบนสามารถอธิบายได้ดังนี้
▶ ไม่มีตัวประกอบตัวใดที่ซ้ำกัน 2 ตัวหรือมากกว่า 2 ตัว
ดังนั้น
รากที่สองของ 8815 = \(\sqrt{5 \times 41 \times 43}\)
คำตอบ รากที่สองของ 8815 = \(\sqrt{8815}\) และ -\(\sqrt{8815}\)
***คำตอบมีทั้งบวกและลบเพราะว่า root ที่ n = 2 เป็นจำนวนคู่
เนื่องจากรากที่สองของ 8815 ไม่สามารถถอดค่าออกจากเครื่องหมาย \(\sqrt{\qquad}\) ได้ ดังนั้นเราสามารถหารากที่สองของ 8815 ได้โดยการหาค่าประมาณ
ค่าประมาณของ รากที่สองของ 8815 คือ 93.888 และ -93.888
***ณ ปัจจุบันระบบยังไม่สามารถแสดงวิธีหาค่าประมาณได้มีแค่คำตอบ
😁 จะเห็นได้ว่าการหารากที่สองของ 8815 ไม่ใช่เรื่องยากอะไรมากนักขอแค่เราพยายามและฝึกฝนทำโจทย์เรื่อยๆ และอย่าไปเครียดกับมันมากนักเราก็สามารถทำมันได้