เครื่องคิดเลขหารากที่สอง, รากที่สาม
เครื่องคิดเลขจะแสดงคำตอบและวิธีหารากที่สอง, รากที่สามให้อัตโนมัติ
*ขณะนี้ระบบรองเลข 0 และจำนวนนับ 1 - 1,000,000 เท่านั้น

รากที่สองของ 1918 คืออะไร มาดูคำตอบและวิธีการคำนวณกัน

การหารากที่สองของ 1918 ไม่ยากเลย ในที่นี้ได้แสดงวิธีหารากที่สองของ 1918 ไว้เป็นขั้นตอนอ่านแล้วเข้าใจง่าย
เทพควิช-lnwquiz
รากที่สองของ 1918 เขียนเป็นสัญลักษณ์ได้ดังนี้ \(\sqrt{1918}\) และ -\(\sqrt{1918}\)
คำตอบรากที่สองของ 1918 = \( \sqrt{1918}\) และ -\( \sqrt{1918}\)
หรือค่าประมาณ = 43.795 และ -43.795
นิยามของรากที่สอง
🤓 ดังนั้นจากคำนิยามข้างต้น รากที่สองของ 1918 คือจำนวนจริงที่ยกกำลังสองแล้วได้ 1918
และเนื่องจาก 1918 เป็นจำนวนจริงบวก รากที่สองของ 1918 มีสองรากคือ
รากที่สองที่เป็นบวกของ 1918 ซึ่งแทนด้วยสัญลักษณ์ \(\sqrt{1918}\)
รากที่สองที่เป็นลบของ 1918 ซึ่งแทนด้วยสัญลักษณ์ -\(\sqrt{1918}\)
การเขียนชื่อ "ราก" สามารถเขียนว่า
"รากที่สอง" หรือ "รากที่ 2" ก็ได้

วิธีหารากที่สองของ 1918 ด้วยการหาจำนวนจริงที่ยกกำลังสองแล้วได้ 1918

เนื่องจากไม่มีจำนวนใดที่ยกกำลังสองแล้วเท่ากับ 1918 แต่เราสามารถหารากที่สองของ 1918 ด้วยวิธีอื่นๆ ได้เช่น การแยกตัวประกอบ ตามตัวอย่างและขั้นตอนด้านล่าง

วิธีหารากที่สองของ 1918 ด้วยการแยกตัวประกอบ

***ในที่นี้ใช้รากที่เป็นบวกเป็นหลักในขั้นตอนแสดงวิธีทำ
การแยกตัวประกอบในที่นี้ใช้วิธีหารสั้น
2
)1918
7
)959
137
)137
1
1918 แยกตัวประกอบได้ = 2 x 7 x 137  👉ดูวิธีการแยกตัวประกอบ
รากที่สองของ 1918 = \(\sqrt{2 \times 7 \times 137}\)

เอาตัวประกอบที่ซ้ำกัน 2 ตัวออกจากเครื่องหมาย \(\sqrt{\qquad}\) มาเขียนด้านนอกได้ 1 ตัว ซึ่งจากการแยกตัวประกอบด้านบนสามารถอธิบายได้ดังนี้
▶ ไม่มีตัวประกอบตัวใดที่ซ้ำกัน 2 ตัวหรือมากกว่า 2 ตัว
ดังนั้น
รากที่สองของ 1918 = \(\sqrt{2 \times 7 \times 137}\)
คำตอบ รากที่สองของ 1918 = \(\sqrt{1918}\) และ -\(\sqrt{1918}\)
***คำตอบมีทั้งบวกและลบเพราะว่า root ที่ n = 2 เป็นจำนวนคู่
เนื่องจากรากที่สองของ 1918 ไม่สามารถถอดค่าออกจากเครื่องหมาย \(\sqrt{\qquad}\) ได้ ดังนั้นเราสามารถหารากที่สองของ 1918 ได้โดยการหาค่าประมาณ
ค่าประมาณของ รากที่สองของ 1918 คือ 43.795 และ -43.795
***ณ ปัจจุบันระบบยังไม่สามารถแสดงวิธีหาค่าประมาณได้มีแค่คำตอบ
😁 จะเห็นได้ว่าการหารากที่สองของ 1918 ไม่ใช่เรื่องยากอะไรมากนักขอแค่เราพยายามและฝึกฝนทำโจทย์เรื่อยๆ และอย่าไปเครียดกับมันมากนักเราก็สามารถทำมันได้